Effects of hydrogen sulfide synthesis inhibitors on posthypoxic ventilatory behavior in the C57BL/6J mouse.

نویسندگان

  • Lucas M Donovan
  • Michael W Moore
  • Carl B Gillombardo
  • Sam Chai
  • Kingman P Strohl
چکیده

BACKGROUND H(2)S synthesis inhibitors (HSSI) have been shown to impact respiratory control. For instance, the HSSI hydroxylamine (HA) decreases the respiratory discharge rate from isolated medullary sections, and HA in addition to other HSSIs propargylglycine and amino-oxyacetic acid (AOAA) have been found to reduce hypoxic responsiveness. OBJECTIVES The aim of this study was to determine if administration of HSSIs could improve respiratory stability in an intact organism prone to recurrent central apneas. METHODS Saline and HSSI compounds were administered to C57BL/6J mice (n = 24), a strain predisposed to recurrent central apneas, prior to measurement of hypoxic and posthypoxic ventilatory behavior. RESULTS Administration of HA and AOAA resulted in a significantly smaller percentage of animals expressing one or more apneas during reoxygenation compared to saline control, and animals given AOAA demonstrated a smaller coefficient of variation for frequency during reoxygenation, a marker suggesting greater respiratory stability. This occurred despite varying effects of the three HSSI compounds on hypoxic ventilatory response. CONCLUSIONS Instability and pause expression are improved by targeting H(2)S synthesis, an effect not predicted by effects on hypoxic responsiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acetazolamide protects against posthypoxic unstable breathing in the C57BL/6J mouse.

Acetazolamide (Acz), a carbonic anhydrase inhibitor, is used to manage periodic breathing associated with altitude and with heart failure. We examined whether Acz would alter posthypoxic ventilatory behavior in the C57BL/6J (B6) mouse model of recurrent central apnea. Experiments were performed with unanesthetized, awake adult male B6 mice (n = 9), ventilatory behavior was measured using flow-t...

متن کامل

Ventilatory behavior after hypoxia in C57BL/6J and A/J mice.

Given the environmental forcing by extremes in hypoxia-reoxygenation, there might be no genetic effect on posthypoxic short-term potentiation of ventilation. Minute ventilation (VE), respiratory frequency (f), tidal volume (VT), and the airway resistance during chemical loading were assessed in unanesthetized unrestrained C57BL/6J (B6) and A/J mice using whole body plethysmography. Static press...

متن کامل

Effect of neuregulin-1 on the auditory cortex in adult C57BL/6J mice

Objective(s): We sought to explore whether neuregulin-1(NRG1) would have a protective effect on the auditory cortices of adult C57BL/6J mice.Materials and Methods: We used RTPCR and Western blot (WB) to detect the expression of NRG1 and ERBB4 (the receptor of NRG1) in the auditory cortices of C57BL/6J mice of different ages (6–8 weeks an...

متن کامل

Strain differences in murine ventilatory behavior persist after urethane anesthesia.

Differences in breathing pattern between awake C57BL/6J (B6) and A/J mice are such that A/J mice breathe slower, deeper, and with greater variability than B6. We theorized that urethane anesthesia, by affecting cortical and subcortical function, would test the hypothesis that strain differences require a fully functional neuroaxis. We anesthetized B6 and A/J mice with urethane, placed them in a...

متن کامل

Identification of novel mouse genes conferring posthypoxic pauses.

Although central to the susceptibility of adult diseases characterized by abnormal rhythmogenesis, characterizing the genes involved is a challenge. We took advantage of the C57BL/6J (B6) trait of hypoxia-induced periodic breathing and its absence in the C57BL/6J-Chr 1(A/J)/NaJ chromosome substitution strain to test the feasibility of gene discovery for this abnormality. Beginning with a geneti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Respiration; international review of thoracic diseases

دوره 82 6  شماره 

صفحات  -

تاریخ انتشار 2011